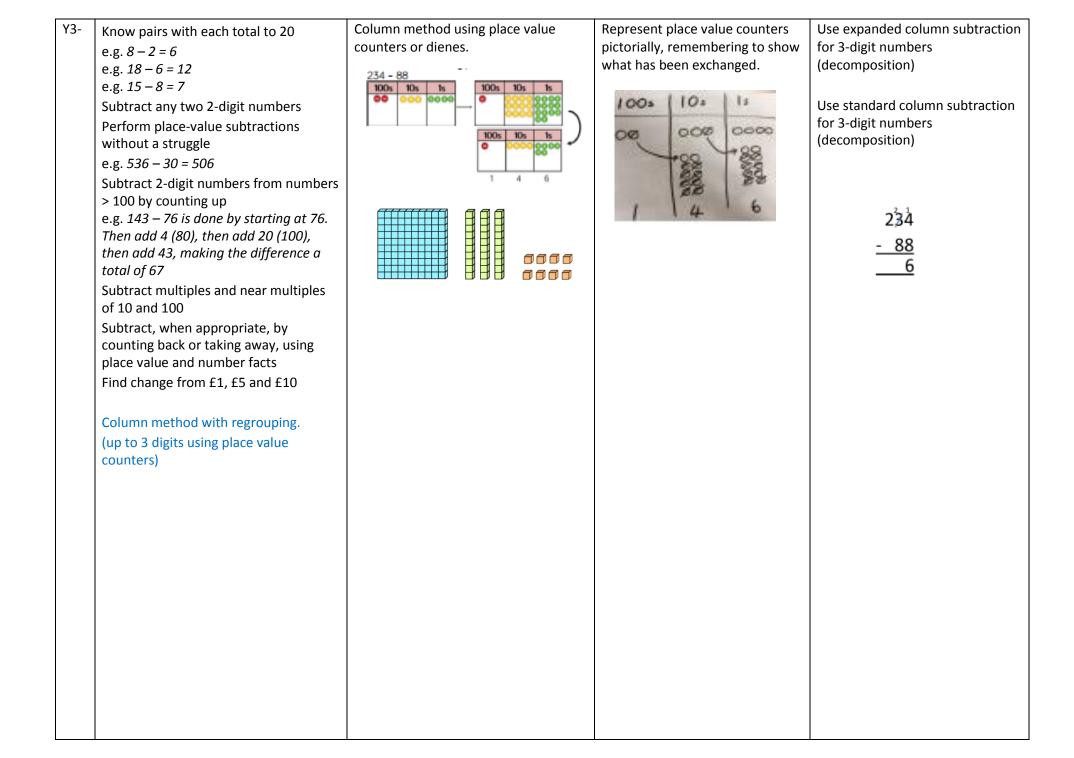
Kea Community Primary School Calculation Policy 2018

	Mental Calculation	Concrete	Pictorial	Abstract
1	Number bonds ('story' of 5, 6, 7, 8, 9,	Combining two parts to make a whole	Children to represent the cubes	41 + 8 add as 1 + 8 = 9
	10 and within 20)	(use cars, teddies shells etc)	using dots or crosses. They could	40 + 9 = 49
	Count on in 1s from a given 2-digit		put each part on a part-part	
	number		whole model too.	(7)
	Add two 1-digit numbers		$(\cdot \cdot)$	\succ
	Add three 1-digit numbers, spotting		\sim	
	doubles or pairs to 10	999 999 99	(:::) –	$(\cdot)(\cdot)$
	Count on in 10s from any given 2-digit		·····	$\bigcirc \bigcirc$
	number		()	
	Add 10 to any given 2-digit number	Counting on using number lines, cubes		The abstract number line:
	Use number facts to add 1-digit	or Numicon.	A bar model which encourages	What is 2 more than 4?
	numbers to	4444	the children to count on, rather	What is the sum of 2 and 4?
	2-digit numbers including missing	012345678910	than count all.	What is the total of 4 and 2?
	number sentences.			4+2=
	e.g. Use 4 + 3 to work out 24 + 3, 34 + 3			
	e.g. 16+ 🗇 = 20		4 11	
	Add by putting the larger number first	A A		
		4 5 6 4 5 6	?	4 5 0
	Combining two parts to make a whole:			
	part whole model.	Regrouping to make ten, using ten		Children to develop an
	Starting at the bigger number and	frames and counters/cubes or	Children to draw the ten frame	understanding of equality e.g.
	counting on- using cubes.	Numicon.	and counters or cubes	
	Regrouping to make 10 using ten			6 + 🗆 = 11
	frame.			6+5=5+□
		<u> </u>		
				6+5=□+4

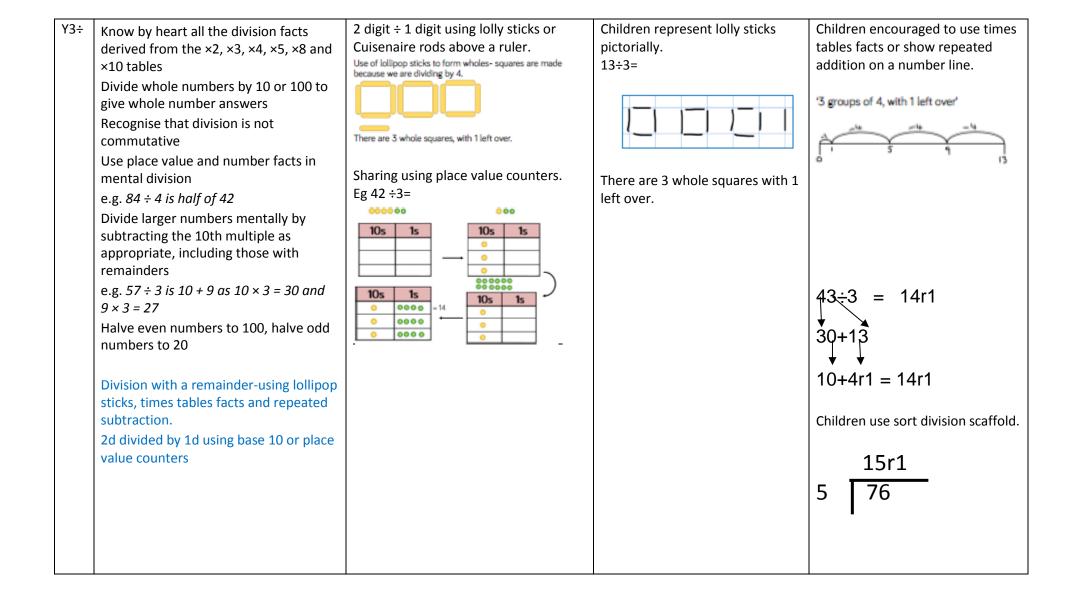
Y1 -	Number bonds ('story' of 5, 6, 7, 8, 9,	Physically taking away and removing	Children draw the concrete	4-3=
	10 and within 20))	objects from a whole (ten frames,	resources they are using and	-4-3
	Count back in 1s from a given 2-digit	Numicon, beads, cubes etc)	cross out the correct amount. The bar model can also be used.	4 3 ?
	number	4-3-1	St. State St	(4)
	Subtract one 1-digit number from another		x x x x o	
	Count back in 10s from any given 2- digit number		and the second se	
	Subtract 10 from any given 2-digit		XXX	Children to represent the
	number including missing number			calculation on a number line or
	sentences.	Counting back (using number line or	Children to represent what they	number track and show their
	Use number facts to subtract 1-digit	number track) children start with 6	see pictorially.	jumps. Encourage children to use
	numbers from 2-digit numbers from 20	and count back 2 6-2-4		the empty number line.
	e.g. Use 7 – 2 to work out 27 – 2,	8888 88		0 1 2 3 4 5 6 7 8 9 10
	37-2		12131415 617181910	
	Taking away ones	1 2 3 4 5 6 7 8 9 10		46
	Counting back			
	Find the difference	Finding the difference (using cubes,	Children to draw the cubes (or	Find the difference between 8
	Part whole model	Numicon, Cuisenaire rods etc). Calculate the difference between 8 and 5.	other concrete objects they have used) or use the bar model to	and 5
	Make 10 using the ten frame	Calculate the office detween 6 and 5.	show what they need to	8 - 5, the difference is
			calculate.	
			00000000	Children to show how they can
		?	00000	make 10 by partitioning the
			8	quantity or number taken away
		Making ten using ten frames.	5 7	14 - 5 = 9
		14 - 5	Children present ten frame	
			pictorially and discuss making 10.	4
				14 - 4 = 10

14 - 4 = 10 10 - 1 = 9

Y1 x	Begin to count in 2s, 5s and 10s Begin to say what three 5s are by counting in 5s, or what four 2s are by counting in 2s, etc. Double numbers to 10 Solve missing number problems Recognising and making equal groups. Doubling Counting in multiples Use cubes, Numicon and other objects in the classroom	Repeated grouping or repeated addition: 3x4 or 4+4+4 or There are 3 equal groups with 4 in each group.	Children represent practical resources in a picture and use a bar model.	Abstract number line showing three jumps of four.
Υ1 ÷	Begin to count in 2s, 5s and 10s Find half of even numbers to 12 and know it is hard to halve odd numbers Find half of even numbers by sharing Begin to use visual and concrete arrays or 'sets of' to find how many sets of a small number make a larger number Solve missing number problems Sharing objects into groups Division as grouping e.g. I have 12 sweets and put them in groups of 3, how many groups? Use cubes and draw round 3 cubes at a time.	Sharing using a range of objects. 6 ÷ 2	Represent the sharing pictorially.	Children encouraged to use their 2 times table facts 6 ÷ 2 = 3


Y2 +	Number bonds – know all the pairs of numbers which make all the numbers to 12, and pairs with a total of 20 Count on in 1s and 10s from any given 2-digit number Add three or more 1-digit numbers Add a 1-digit number to any 2-digit number using number facts, including bridging multiples of 10 e.g. 45 + 4 e.g. 38 + 7 Add 10 and small multiples of 10 to any given 2-digit number Add any pair of 2-digit numbers Begin to understand inverse operations and commutativity through missing number sentences and bar models Adding three single digits. Use of base 10 to combine two numbers.	TO + 0 using base 10. Continue to develop understanding of partitioning and place value. 41 + 8 10s and 1s + 10s and 1s using base 10. Continue developing understanding of partitioning and place value. 36 + 25	Children to represent the base 10 e.g. lines for 10s and dots for 1s Children to represent the base 10 in a place value chart. Use the bar model for adding two 2 digit numbers. 73 46 27	$\int_{4}^{1} \int_{41+8}^{36+25=} \int_{1}^{36+25=} \int_{1}^{61} \int_{0}^{1} \int_{1}^{1} \int_{0}^{1} $
---------	---	--	---	---

Y2 -	Number bonds – know all the pairs of numbers which make all the numbers to 20 Count back in 1s and 10s from any given 2-digit number Subtract a 1-digit number from any 2- digit number using number facts, including bridging multiples of 10 e.g. 56 – 3 e.g. 53 – 5 Subtract 10 and small multiples of 10 from any given 2-digit number Subtract any pair of 2-digit numbers by counting back in 10s and 1s (when no regrouping is required) or by counting up Begin to understand inverse operations through missing number sentences and bar models. Counting back Find the difference Part whole model Make 10 Use of base 10	Column method using base 10.	Represent the base 10 pictorially, remembering to show the exchange.	Horizontal number sentences including missing number problems 30-15=15 15=30-15 30-□=15


Y2 x	Know the x2,x5 and x10 tables Begin to know x3 and x4 tables Begin to understand that multiplication is repeated addition and to use arrays e.g. 3 × 4 is three rows of 4 dots Begin to learn the associated division facts for know tables eg how many 2s	Use arrays to show (counters and oth can be used) 5 x 2 = 2 x 5	w commutativity er concrete objects	Children represent arrays pictorially.	Horizontal number sentences including missing number problems 3x4=12
	are there in 16? Double numbers up to 20 and know corresponding halves. Begin to understand inverse operations and commutativity through missing number sentences and bar models	2 lots of 5	5 lots of 2	Children use the bar model to show grouping. 12 3 3 3	3x□=12
	Arrays- showing commutative multiplication				

 Y2 Know the x2,x5 and x10 tables ÷ Begin to know x3 and x4 tables Begin to learn the associated division facts for know tables eg how many 2s are there in 16? Using fingers, say where a given number is in the 2s, 5s or 10s count 	Repeated subtraction using Cuisenaire rods above a ruler. $6 \div 2 = 3$	Children represent repeated subtraction pictorially.	Abstract number line to show the equal groups that have been subtracted. $\boxed{-\frac{2}{3} + \frac{2}{3} $
 e.g. 8 is the fourth number when I count in 2s Relate division to grouping e.g. How many groups of 5 in 15? Halve even numbers to 20 Begin to halve numbers to 40 and multiples of 10 to 100 Find ¹/₂, 2/4, ¹/₃, ¹/₄ and ³/₄ of a quantity of objects and of amounts (whole number answers) Must know that in fractions all parts of the whole should be equal. Division as grouping Division within arrays-linking to multiplication Repeated subtraction 	3 groups of 2	Children use bar model to represent repeated subtraction.	Horizontal number sentences including missing number problems 10÷5=2 2=10÷5 10÷□=2

Y3+	Know pairs with each total to 20 e.g. $2 + 6 = 8$, 12 + 6 = 18, 7 + 8 = 15 Know pairs of multiples of 10 with a total of 100 Add any two 2-digit numbers by counting on in 10s and 1s or by using partitioning Add multiples and near multiples of 10 and 100 Perform place-value additions without a struggle e.g. $300 + 8 + 50 = 358$ Use place value and number facts to add a 1-digit or 2-digit number to a 3-digit number e.g. $104 + 56$ is 160 since $104 + 50 = 154$ and $6 + 4 = 10$ 676 + 8 is 684 since $8 = 4 + 4$ and 76 + 4 + 4 = 84 Add pairs of 'friendly' 3-digit numbers e.g. $320 + 450$ Begin to add amounts of money using partitioning	Use of place value counters or dienes to add HTO + TO and HTO + HTO. (When there are 10 ones in the 1s column, we exchange for 1 ten. When there are 10 tens in the 10s column, we exchange for 1 hundred). $\boxed{100510515}_{6}$	Children represent counters in a place value chart and circle when they make an exchange. Bar 70 + 30 = 100 model with missing totals.	Use expanded column addition to add two or three 3-digit numbers or three 2-digit numbers Vertical layout: (tens digit first) Partitioning e.g. 47 40 and 7 + 76 70 and 6 110 and 13 = 123 Adding the tens first enables the children to get a rough size of the answer. Compact column addition 243 +368 6 11 1 1
	Column method-regrouping. Using place value counters (up to 3 digits)			

Y3x	Know by heart all the multiplication facts in the ×2, ×3, ×4, ×5, ×8 and ×10 tables Multiply whole numbers by 10 and 100 Recognise that multiplication is commutative Use place value and number facts in mental multiplication e.g. 30 × 5 is 15 × 10 Partition teen numbers to multiply by a 1-digit number e.g. 3 × 14 as 3 × 10 and 3 × 4 Double numbers up to 100 Arrays 2d × 1d using base 10	Partition to multiply using Numicon, Cuisenaire rods or base 10.	$ \begin{array}{c cccc} 10 & 1 & & \\ \hline \\ 1 & & \\ \hline \\ 6 & & \\ \hline \\ 6 & & \\ \hline \\ 6 & & \\ \hline \\ 0 & & \\ \hline \hline 0 & & \\ \hline 0 & & \\ \hline \hline \hline \hline 0 & & \\ \hline \hline \hline \hline \hline \hline 0 & $	Children to be encouraged to show the steps they have taken. A number line can also be used Use partitioning (grid multiplication) to multiply 2-digit and 3-digit numbers by 'friendly' 1-digit numbers e.g. grid layout (expanded method): $\frac{x 30 8}{5 150 40}$ 150 + 40= 190 Expanded and formal written method $6 \times 23 = 23$ $\frac{x 6}{138}$ $\frac{1}{11}$
-----	--	---	---	--

Y4+	Add any two 2-digit numbers by partitioning or counting on Know by heart/quickly derive number bonds to 100 and to £1 Add to the next 100, £1 and whole number e.g. $234 + 66 = 300$ e.g. $3\cdot 4 + 0\cdot 6 = 4$ Perform place-value additions without a struggle e.g. $300 + 8 + 50 + 4000 = 4358$ Add multiples and near multiples of 10, 100 and 1000 Add £1, 10p, 1p to amounts of money Use place value and number facts to add 1-, 2-, 3- and 4-digit numbers where a mental calculation is appropriate e.g. $4004 + 156$ by knowing that $6 + 4 =$ 10 and that $4004 + 150 = 4154$ so the total is 4160 Column method - regrouping. (up to 4 digits)	Use of dienes to add ThHTO + HTO and ThHTO + ThHTO. (When there are 10 ones in the 1s column, we exchange for 1 ten. When there are 10 tens in the 10s column, we exchange for 1 hundred. When there are 10 hundreds in the 100s column, we exchange for 1 thousand).	Bar models including unknown numbers up to 4 digits and decimals up to 1 decimal place.	Column addition for 3-digit and 4- digit numbers e.g. Compact written method: . 3557 <u>1457</u> <u>5014</u> 11 Pupils need to be secure in understanding of place value so once they are working with 3+ digits and with decimals they can begin to use this compact method.
-----	---	---	---	--

Y4-	Subtract any two 2-digit numbers Know by heart/quickly derive number bonds to 100 Perform place-value subtractions without a struggle e.g. 4736 – 706 = 4030 Subtract multiples and near multiples of 10, 100, 1000, £1 and 10p Subtract multiples of 0·1 Subtract by counting up e.g. 503 – 368 is done by adding 368 + 2 + 30 + 100 + 3 (so we added 135) Subtract, when appropriate, by counting back or taking away, using place value and number facts Subtract £1, 10p, 1p from amounts of money Find change from £10, £20 and £50 Column method with regrouping. (up to 4 digits)	Use of dienes to subtract ThHTO - HTO and ThHTO - ThHTO. Exchange 1000 for 10 hundreds and so on.	Use bar model to calculate subtraction with larger numbers.	Use expanded column subtraction for 4-digit numbers (decomposition) Use standard column subtraction for 4-digit numbers (decomposition) $\frac{1}{6 \sqrt[7]{4}}$
-----	--	--	--	---

Know by heart all the multiplication	Use of dienes to multiply.	Use a vertical written method t
facts up to		multiply a 1-digit number by a
12 × 12		digit number (ladder method)
Recognise factors up to 12 of 2-digit numbers		expanded written method
Multiply whole numbers and 1-place		136
decimals by 10, 100, 1000		X5
Multiply multiples of 10, 100 and 100	0	<u>X5</u> 30
by 1-digit numbers		150
e.g. <i>300 × 6</i>	ITP arrays extend knowledge from Y3.	500
e.g. <i>4000 × 8</i>	5	680
Use understanding of place value and number facts in mental multiplication		
e.g. 36 × 5 is half of 36 × 10		Use an efficient written metho to multiply a 2-digit number b
e.g. 50 × 60 = 3000	7	number between 10 and 20 by
Partition 2-digit numbers to multiply	by	partitioning (grid method)
a 1-digit number mentally		
e.g. 4 × 24 as 4 × 20 and 4 × 4	PHINALY INSUMAL SUMMAY	x 30 5
Multiply near multiples by rounding		
e.g. 33 × 19 as (33 × 20) – 33		10 300 50
Find doubles to double 100 and beyo using partitioning	nd	4 120 20
Begin to double amounts of money		300+50+120+20+ 490
e.g. £35·60 doubled is £71·20		
Column multiplication introduced wit	h	
place value counters.		
(2 and 3 digit multiplied by 1 digit)		

Y4÷	Know by heart all the division facts up to 144 \div 12 Divide whole numbers by 10, 100, to give whole number answers or answers with 1 decimal place Divide multiples of 100 by 1-digit numbers using division facts e.g. 3200 \div 8 = 400 Use place value and number facts in mental division e.g. 245 \div 20 is half of 245 \div 10 Divide larger numbers mentally by subtracting the 10th or 20th multiple as appropriate e.g. 156 \div 6 is 20 + 6 as 20 \times 6 = 120 and 6 \times 6 = 36 Find halves of even numbers to 200 and beyond using partitioning Begin to halve amounts of money e.g. half of £52·40 is £26·20 Division with a remainder Short division (up to 3 digits by 1 digit concrete and pictorial)	Short division using place value counters to group. 615 ÷ 5 =	Represent the place value counters pictorially.	Use a written method to divide a 2-digit or a 3-digit number by a 1-digit number. Give remainders as whole numbers. 477 \div 7 477 -420 (60 lots of 7) 57 -56 (8 lots of 7) 1 Children are encouraged to write the times table for support. x 7 1 x 7 = 7 2 x 7 = 14 3 x 7 = 21 4 x 7 = 28 5 x 7 = 35 Children use short division scaffold. 123 5 $6^{1}1^{1}5$
-----	--	---	---	---

Y5+	Know number bonds to 1 and to the next whole number Add to the next 10 from a decimal number e.g. $13.6 + 6.4 = 20$ Add numbers with 2 significant digits only, using mental strategies e.g. $3.4 + 4.8$ e.g. $23\ 000 + 47\ 000$ Add 1- or 2-digit multiples of 10, 100, 1000, 10 000 and 100 000 e.g. $600\ 000 + 700\ 000$ Add near multiples of 10, 100, 1000, 10 000 and 100 000 to other numbers e.g. $82\ 472\ + 30\ 004$ Add decimal numbers which are near multiples of 1 or 10, including money e.g. $6.34\ + 1.99$ e.g. $f.34.59\ + f.19.95$ Use place value and number facts to add two or more 'friendly' numbers, including money and decimals e.g. $3\ + 8\ + 6\ + 4\ + 7$ e.g. $0.6\ + 0.7\ + 0.4$ e.g. $2056\ + 44$ Use negative numbers on a scale Column method regrouping. Use of place value counters for adding decimals.	Children use arrow cards, dienes and place value counters for numbers up to 100,000 including 2 decimal places.	Children use place value charts to calculate numbers up to 2 decimal places.	Use column addition to add two or three whole numbers with up to 5 digits Use column addition to add any pair of 2-place decimal numbers, including amounts of money 34.10 + 2.65 36.75 Check answers using inverse calculation and bar model
-----	--	---	--	---

Y5-	Subtract numbers with 2 significant digits only, using mental strategies e.g. $6 \cdot 2 - 4 \cdot 5$ e.g. $72\ 000 - 47\ 000$ Subtract 1- or 2-digit multiples of 10, 100, 1000, 10 000 and 100 000 e.g. $8000 - 3000$ e.g. $60\ 000 - 200\ 000$ Subtract 1- or 2-digit near multiples of 10, 100, 1000, 10 000 and 100 000 from other numbers e.g. $82\ 472 - 30\ 004$ Subtract decimal numbers which are near multiples of 1 or 10, including money e.g. $6 \cdot 34 - 1 \cdot 99$ e.g. $f \cdot 34 \cdot 59 - f \cdot 19 \cdot 95$ Use counting up subtraction, with knowledge of number bonds to 10, 100 or f1, as a strategy to perform mental subtraction e.g. $f \cdot 10 - f \cdot 3 \cdot 45$ e.g. $1000 - 782$	Children use arrow cards, dienes and place value counters for numbers up to 100,000 including 2 decimal places.	Children use place value charts to calculate numbers up to 2 decimal places.	Use compact or expanded column subtraction (decomposition) to subtract numbers with up to 7 digits In Y5 and 6, time will also be spent dealing with zeros when adjusting the columns as this can be confusing to many children. e.g. 402 – 187 1 4×2 -1×7 2×15 Choose the most efficient method in any given situation
	e.g. £10 – £3·45			

Y5x	Know by heart all the multiplication facts up to 12×12 Multiply whole numbers and 1- and 2- place decimals by 10, 100, 1000, 10 000 Use knowledge of factors and multiples in multiplication e.g. 43×6 is double 43×3 e.g. 28×50 is $1/2$ of $28 \times 100 = 1400$ Use knowledge of place value and rounding in mental multiplication e.g. 67×199 as $67 \times 200 - 67$ Use doubling and halving as a strategy in mental multiplication e.g. 58×5 is half of 58×10 e.g. 34×4 is 34 doubled twice Partition 2-digit numbers, including decimals, to multiply by a 1-digit number mentally e.g. 6×27 as 6×20 (120) plus 6×7 (42) Double amounts of money by partitioning e.g. £37.45 doubled is £37 doubled (£74) plus $45p$ doubled (90p) giving a total of £74.90 Column multiplication Abstract only but might need a repeat of year 4 first (up to 4 digit numbers multiplied by 1 or 2 digits)	Children use dienes and place value counters for numbers up to 100,000 including 2 decimal places.	Children use place value charts to calculate numbers up to 2 decimal places.	Use short multiplication to multiply a 1-digit number by a number with up to 4 digits. Use long multiplication to multiply 2-digit and 4-digit numbers by a number between 11 and 20. Choose the most efficient method in any given situation. Most children in Y5 should be able to work with the grid method and the expanded written (ladder) method. More able children may begin to use the standard written method. $\frac{142}{20} \qquad \frac{142}{2698}$ Find simple percentages of amounts. e.g. 10%, 5%, 20%, 15% and 50%
-----	--	--	--	--

Y6 +	Know by heart number bonds to 100 and use these to derive related facts e.g. $3.46 + 0.54$ Derive, quickly and without difficulty, number bonds to 1000 Add small and large whole numbers where the use of place value or number facts makes the calculation do-able mentally e.g. $34\ 000 + 8000$ Add multiples of powers of 10 and near multiples of the same e.g. $6345 + 199$ Add negative numbers in a context such as temperature where the numbers make sense Add two 1-place decimal numbers or two 2-place decimal numbers less than 1 e.g. $4.5 + 6.3$ e.g. $0.74 + 0.33$ Add positive numbers to negative numbers e.g. <i>Calculate a rise in temperature or</i> <i>continue a sequence beginning with a</i> <i>negative number</i> Column method regrouping. Abstract methods. Place value counters to be used for adding decimal numbers.	Children use arrow cards or place value counters up to 10,000,000 including 3 decimal places.	Children use bar models using knowledge of number bonds.	Use column addition to add numbers with up to 8 digits. Use column addition to add decimal numbers with up to 3 decimal places. Add mixed numbers and fractions with different denominators.
---------	--	---	---	--

Y6 -	Use number bonds to 100 to perform mental subtraction of any pair of integers by complementary addition e.g. $1000 - 654$ as $46 + 300$ in our heads Use number bonds to 1 and 10 to perform mental subtraction of any pair of 1-place or 2-place decimal numbers using complementary addition and including money e.g. $10 - 3.65$ as $0.35 + 6$ e.g. $f50 - f34.29$ as $71p + f15$ Use number facts and place value to perform mental subtraction of large numbers or decimal numbers with up to 2 places e.g. $467 900 - 3005$ e.g. $4.63 - 1.02$ Subtract multiples of powers of 10 and near multiples of the same Subtract negative numbers in a context such as temperature where the numbers make sense Column method with regrouping. Abstract methods. Place value counters for decimals with different amounts of decimal places.	Children use arrow cards or place value counters up to 10,000,000 including 3 decimal places.	Bar model for addition and subtraction.	Use column subtraction (decomposition) to subtract numbers with up to 8 digits. Subtract mixed numbers and fractions with different denominators.
------	---	---	---	--

Y6 x	Know by heart all the multiplication	Loi
	facts up to	pla
	12 × 12	
	Multiply whole numbers and decimals	
	with up to	
	3 places by 10, 100 or 1000	
	e.g. 234 × 1000 = 234 000	
	e.g. 0·23 × 1000 = 230	
	Identify common factors, common	
	multiples and prime numbers and use	
	factors in mental multiplication	
	e.g. 326 × 6 is 652 × 3 which is 1956	
	Use place value and number facts in	-
	mental multiplication	
	e.g. 4000 × 6 = 24 000	
	e.g. $0.03 \times 6 = 0.18$	
	Use doubling and halving as mental	
	multiplication strategies, including to	
	multiply by 2, 4, 8, 5, 20, 50 and 25	
	e.g. 28 × 25 is a quarter of 28 × 100 = 700	
	Use rounding in mental multiplication	
	e.g. 34 × 19 as (34 × 20) – 34	
	Multiply 1- and 2-place decimals by	
	numbers up to and including 10 using	
	place value and partitioning	
	e.g. 3·6 × 4 is 12 + 2·4	
	e.g. 2·53 × 3 is 6 + 1·5 + 0·09	
	Double decimal numbers with up to 2	
	places using partitioning	
	e.g. 36·73 doubled is double 36 (72)	
	plus double 0·73 (1·46)	
	Column multiplication	
	Abstract methods (multi-digit up to 4	1
	digits by a 2 digit number)	1
		1

ong multiplication up to 8 digits using lace value counters.					
Ones	Tenths	Hundredths	Thousandths		

Use standard long multiplication	
to multiply a 2-digit number by a	
number with up to 4 digits	
Use standard long multiplication	
to multiply a 3-digit number by a	
number with up to 4 digits	
Multiply fractions and mixed	
numbers by whole numbers	
numbers by whole numbers	
Multiply fractions by proper	
fractions	
Use percentages for comparison	
and calculate simple percentages	

VC	Know by boott all the division factors	Long division using place value	Par models to solve	Lles chart division to divide a
Y6	Know by heart all the division facts up	Long division using place value	Bar models to solve	Use short division to divide a
÷	to 144 ÷ 12	counters.	multiplication and division	number with up to 4 digits by a 2-
	Divide whole numbers by powers of 10	1000s 100s 10s 1s	problems.	digit number
	to give whole number answers or		4,950	Use long division (standard long
	answers with up to	•		division method aka "bus stop")
	3 decimal places			to divide 3-digit and 4-digit
	Identify common factors, common	1000s 100s 10s 1s	•	numbers by 'friendly' 2-digit
	multiples and primes numbers and use	8886	A	numbers.
	factors in mental division		BBB	
	e.g. 438 ÷ 6 is 219 ÷ 3 which is 73		В	After exchanging the hundred, we 12 2544
	Use tests for divisibility to aid mental			have 14 tens. We can group 12 tens into a group of 12, which leaves 2 tens. 14 12 2
	calculation			<u></u>
	Use doubling and halving as mental			0212
	division strategies, for example to			After exchanging the 2 tens, we 12 2544 have 24 ones. We can group 24 ones 24
	divide by 2, 4, 8, 5, 20 and 25	10 100 1000		into 2 group of 12, which leaves no remainder. 14
	e.g. 628 ÷ 8 is halved three times:			have 24 ones. We can group 24 ones $\frac{24}{12}$ into 2 group of 12, which leaves no remainder. $\frac{24}{12}$
	314, 157, 78.5	1000000 1000000		0
	Divide 1- and 2-place decimals by			Give remainders as whole
	numbers up to and including 10 using			numbers or as fractions or as
	place value			decimals
	e.g. $2 \cdot 4 \div 6 = 0 \cdot 4$	Ones Tenths Hundredths Thousandths		Divide a 1-place or a 2-place
	e.g. 0·65 ÷ 5 = 0·13			decimal number by a number ≤
	e.g. £6·33 ÷ 3 = £2·11			12 using multiples of the divisors.
	Halve decimal numbers with up to 2			Divide proper fractions by whole
	places using partitioning			numbers
	e.g. Half of 36.86 is half of 36 (18) plus			Chunking to include decimals:
	half of 0·86 (0·43)			e.g. 476 ÷5 476
	Know and use equivalence between			- 450
	simple fractions, decimals and			<u>- 430</u> (90 lots of 5)
	percentages, including in different contexts			26
				- 25
	Recognise a given ratio and reduce a given ratio to its lowest terms			(5 lots of 5)
				1
	Short division			<u>- 1</u>
				(0.2 lots of 5)
	Long division with place value counters			0
	(up to 4 digits by a 2 digit number)			
	Children should exchange into the tenths and hundredths column too			= 95.2
[

		Extending to 3 or 4 digit by 2 digit division using chunking	
		<u>. 21 6/23</u> 23)489 <u>460</u> 29 <u>23</u> 6	20x 1x