

YEAR 4 PIM - MULTIPLY 2-DIGITS BY 1-DIGIT

Fluency 1

Start with the ones to exchange to tens if needed.

If there are <u>ten</u> or more ones, exchange for a <u>ten</u>.

If there are <u>ten</u> or more tens, exchange for a <u>hundred</u>.

	4	5
×		6
2	7	0
2	3	

Fluency 2

Fluency 3

Fluency 4

Reasoning 1

Modelled DAB Reasoning Responses

D – I agree with Jane.

A – She will need to exchange the ones for this calculation.

B – We start with the ones to exchange to tens if needed. 7 x 3 = 21 so we will need to exchange 20 ones to 2 tens.

Reasoning 2

Modelled DAB Reasoning Response

D – One of the calculations is different.

 $A - 38 \times 9 = 272$ is the odd one out. 56 x 4 = 224 and 24 x 7 = 168 are both correct. 38 x 9 = 272 is not correct.

B – The 7 exchanged tens have not been added to the 27 tens. The correct answer is 342.

Reasoning 3

Modelled DAB Reasoning Response

D – Sometimes

A – Sometimes there is one exchange when multiplying a 2-digit number by a 1-digit number. Sometimes there are no exchanges or two exchanges.

B – There is one exchange in the calculation: $23 \times 4 = 92$; $3 \times 4 = 12$ so ten of the ones are exchanged for one ten.

There are two exchanges in the calculation: $65 \times 7 = 455$; $5 \times 7 = 35$ so 30 ones are exchanged for 3 tens. $60 \times 7 = 420$ and 420 + 3 tens = 45 tens so 40 of the tens are exchanged for 4 hundreds.

There are no exchanges in the calculation $34 \times 2 = 68$; $4 \times 2 = 8$ and $30 \times 2 = 60$.

Reasoning 4

Modelled DAB Reasoning Response

 ${f D}$ – The missing number from the first calculation is 3. The missing number from the second calculation is 8.

 \mathbf{A} – I used the numbers that I can see and the products to find the missing numbers.

B – In the first calculation, I can see that there are 2 ones in the 2-digit number. When this is multiplied by the missing number, it gives me a number with 6 ones. I know that $2 \times 3 = 6$, and if I multiply the 3 tens by 3 then I get 9 tens which I can also see in the product. $32 \times 3 = 96$ so 3 is the missing number.

In the second calculation, I can see that there are 3 ones in the 2-digit number and 4 ones in the 4-digit number. $3 \times 4 = 12$ so ten ones have been exchanged and added to the tens column. There are 33 tens in my answer so if I remove the one ten that is added then I get 32 tens. I know that when 4 is multiplied by 80, it gives the product 320. $83 \times 4 = 332$ so 8 is the missing number.

Download our 'DAB' posters to support reasoning in your classroom:

https://www.deepeningunderstanding.co.uk/product/dab-reasoning-posters/

Problem Solving 1

There is one possible solution:

