Fluency 1

Start with the ones to exchange to tens if needed.
If there are ten or more ones, exchange for a ten.
If there are ten or more tens, exchange for a hundred.

	2	3
\times		4
	9	2

1

	4	5
\times		6
2	7	0
2	3	

Fluency 2

Fluency 3

	2	8
\times		8
2	2	4
2	6	

Fluency 4

	5	6
\times		5
2	8	0
2	3	

© Copyright Deepening Understanding LTD 2019
Photocopiable for educational purposes only

Reasoning 1

Modelled DAB Reasoning Responses

D - I agree with Jane.
A - She will need to exchange the ones for this calculation.
B - We start with the ones to exchange to tens if needed. $7 \times 3=21$ so we will need to exchange 20 ones to 2 tens.

Reasoning 2

Modelled DAB Reasoning Response

D - One of the calculations is different.
A $-38 \times 9=272$ is the odd one out. $56 \times 4=224$ and $24 \times 7=168$ are both correct. $38 \times 9=272$ is not correct.

B - The 7 exchanged tens have not been added to the 27 tens. The correct answer is 342 .

Reasoning 3

Modelled DAB Reasoning Response

D - Sometimes
A - Sometimes there is one exchange when multiplying a 2-digit number by a 1 -digit number. Sometimes there are no exchanges or two exchanges.
\mathbf{B} - There is one exchange in the calculation: $23 \times 4=92 ; 3 \times 4=12$ so ten of the ones are exchanged for one ten.

There are two exchanges in the calculation: $65 \times 7=455 ; 5 \times 7=35$ so 30 ones are exchanged for 3 tens. $60 \times 7=420$ and $420+3$ tens $=45$ tens so 40 of the tens are exchanged for 4 hundreds.

There are no exchanges in the calculation $34 \times 2=68 ; 4 \times 2=8$ and $30 \times 2=$ 60.

Reasoning 4

Modelled DAB Reasoning Response

D - The missing number from the first calculation is 3 . The missing number from the second calculation is 8 .

A - I used the numbers that I can see and the products to find the missing numbers.

B - In the first calculation, I can see that there are 2 ones in the 2-digit number. When this is multiplied by the missing number, it gives me a number with 6 ones. I know that $2 \times 3=6$, and if I multiply the 3 tens by 3 then I get 9 tens which I can also see in the product. $32 \times 3=96$ so 3 is the missing number.

In the second calculation, I can see that there are 3 ones in the 2-digit number and 4 ones in the 4 -digit number. $3 \times 4=12$ so ten ones have been exchanged and added to the tens column. There are 33 tens in my answer so if I remove the one ten that is added then I get 32 tens. I know that when 4 is multiplied by 80, it gives the product $320.83 \times 4=332$ so 8 is the missing number.

Download our 'DAB' posters to support reasoning in your classroom:

https://www.deepeningunderstanding.co.uk/product/dab-reasoning-posters/

Problem Solving 1

There is one possible solution:

© Copyright Deepening Understanding LTD 2019

Photocopiable for educational purposes only

