Kea Community Primary School Calculation Policy 2021

Reviewed January 2021

	Mental Calculation	Concrete	Pictorial	Abstract	
Y1 +	Number bonds ('story' of 5, 6, 7, 8, 9, 10 and within 20) Count on in 1s from a given 2-digit number Add two 1-digit numbers Add three 1-digit numbers, spotting doubles or pairs to 10 Count on in 10s from any given 2-digit number Add 10 to any given 2-digit number Use number facts to add 1-digit numbers to 2-digit numbers including missing number sentences. e.g. Use $4+3$ to work out $24+3,34+3$ e.g. $16+\square=20$ Add by putting the larger number first Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on- using cubes. Regrouping to make 10 using ten frame.	Combining two parts to make a whole (use cars, teddies shells etc) Counting on using number lines, cubes or Numicon. Regrouping to make ten, using ten frames and counters/cubes or Numicon. $6+5$ Dienes blocks	Children to represent the cubes using dots or crosses. They could put each part on a part-part whole model too. A bar model which encourages the children to count on, rather than count all. Children to draw the ten frame and counters or cubes	$41+8$ add as $1+8=9$ $40+9=49$ The abstract number line: What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2 ? $4+2=$ Children to develop an understanding of equality e.g. $\\| \begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$	

Y1 x	Begin to count in 2 s , 5 s and 10 s Begin to say what three 5 s are by counting in 5 s , or what four 2 s are by counting in 2 s , etc. Double numbers to 10 Solve missing number problems Recognising and making equal groups. Doubling Counting in multiples Use cubes, Numicon and other objects in the classroom	Repeated grouping or repeated addition: 3×4 or $4+4+4$ or There are 3 equal groups with 4 in each group. Number lines to show repeated groups. \square \square	Children represent practical resources in a picture and use a bar model. Represent this pictorially alongside a number line.	Abstract number line showing three jumps of four.
Y 1 \div	Begin to count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s Find half of even numbers to 12 and know it is hard to halve odd numbers Find half of even numbers by sharing Begin to use visual and concrete arrays or 'sets of' to find how many sets of a small number make a larger number Solve missing number problems Sharing objects into groups Division as grouping e.g. I have 12 sweets and put them in groups of 3, how many groups? Use cubes and draw round 3 cubes at a time.	Sharing using a range of objects. $6 \div 2$	Represent the sharing pictorially.	Children encouraged to use their 2 times table facts$6 \div 2=3$3 3

Number bonds - know all the pairs of numbers which make all the numbers to 12 , and pairs with a total of 20 Count on in 1 s and 10 s from any given 2-digit number
Add three or more 1-digit numbers Add a 1-digit number to any 2-digit number using number facts, including bridging multiples of 10
e.g. $45+4$
e.g. $38+7$

Add 10 and small multiples of 10 to any given
2-digit number
Add any pair of 2-digit numbers
Begin to understand inverse operations and commutativity through missing number sentences and bar models

Adding three single digits.
Use of base 10 to combine two numbers.

TO + 0 using base 10. Continue to develop understanding of partitioning and place value.

$41+8$

$10 s$ and $1 s+10 s$ and $1 s$ using base 10. Continue developing understanding of partitioning and place value. $36+25$

Children to represent the base 10 e.g. lines for 10 s and dots for 1 s

10_{s}	$1 s$
1111	
4	$\ldots \ldots .$.

$41+8$
Children to represent the base 10 in a place value chart.

Use the bar model for adding two 2 digit numbers. 73

46
27

Looking for ways to make 10

$36+25=61$
$1 \quad 1$
$+2 \quad 9$
10
$3 \quad 0$
40

Number bonds - know all the pairs of numbers which make all the numbers to 20

Count back in 1s and 10s from any given 2-digit number
Subtract a 1-digit number from any 2 digit number using number facts, including bridging multiples of 10 e.g. 56-3
e.g. 53-5

Subtract 10 and small multiples of 10 from any given 2-digit number Subtract any pair of 2-digit numbers by counting back in 10s and 1s (when no regrouping is required) or by counting up
Begin to understand inverse operations through missing number sentences and bar models.

Counting back

Find the difference
Part whole model
Make 10
Use of base 10

Represent the base 10 pictorially, remembering to show the exchange.

Use the bar model to show inverse of addition.

30

15 15

9-4= ?

Horizontal number sentences including missing number problems
$30-15=15$
$15=30-15$
$30-\square=15$

Know the $x 2, x 5$ and $x 10$ tables Begin to know $x 3$ and $x 4$ tables Begin to learn the associated division facts for know tables eg how many 2 s are there in 16?
Using fingers, say where a given number is in the $2 \mathrm{~s}, 5 \mathrm{~s}$ or 10 s count e.g. 8 is the fourth number when I count in 2 s

Relate division to grouping
e.g. How many groups of 5 in 15?

Halve even numbers to 20
Begin to halve numbers to 40 and multiples of 10 to 100
Find $1 / 2,2 / 4,1 / 3,1 / 4$ and $3 / 4$ of a quantity of objects and of amounts (whole number answers)
Must know that in fractions all parts of the whole should be equal.

Division as grouping

Division within arrays-
linking to multiplication
Repeated subtraction

Repeated subtraction using Cuisenaire rods above a ruler
$6 \div 2=3$

3 groups of 2

Children represent repeated subtraction pictorially.

Children use bar model to represent repeated subtraction.

Abstract number line to show the equal groups that have been subtracted.

Horizontal number sentences including missing number problems
$10 \div 5=2$
$2=10 \div 5$
$10 \div \square=$

Y3- Know pairs with each total to 20 e.g. $8-2=6$ e.g. $18-6=12$ e.g. $15-8=7$ Subtract any two 2-digit numbers Perform place-value subtractions without a struggle e.g. $536-30=506$ Subtract 2-digit numbers from numbers >100 by counting up e.g. $143-76$ is done by starting at 76 . Then add 4 (80), then add 20 (100), then add 43, making the difference a total of 67 Subtract multiples and near multiples of 10 and 100 Subtract, when appropriate, by counting back or taking away, using place value and number facts Find change from $£ 1, £ 5$ and $£ 10$ Column method with regrouping. (up to 3 digits using place value counters)	Column method using place value counters or dienes.

Represent place value counters pictorially, remembering to show what has been exchanged.

Use expanded column subtraction
for 3-digit numbers
(decomposition)

Use standard column subtraction for 3-digit numbers
(decomposition)

Y3x	Know by heart all the multiplication facts in the $\times 2, \times 3, \times 4, \times 5, \times 8$ and $\times 10$ tables Multiply whole numbers by 10 and 100 Recognise that multiplication is commutative Use place value and number facts in mental multiplication e.g. 30×5 is 15×10 Partition teen numbers to multiply by a 1 -digit number e.g. 3×14 as 3×10 and 3×4 Double numbers up to 100 Arrays $2 \mathrm{~d} \times 1 \mathrm{~d}$ using base 10

Partition to multiply using Numicon Cuisenaire rods or base 10.

Formal column method with place value counters or base 10.
3×23

Formal column method with place value counters.
6×23

Children to be encouraged to show the steps they have taken.

4 number line can alsó be used

Use partitioning (grid multiplication) to multiply 2-digit and 3-digit numbers by 'friendly' 1-digit numbers e.g.
grid layout (expanded method):

x	30	8
5	150	40

$150+40=190$

Expanded and formal written method
$6 \times 23=$
23
$\times 6$
138
11

Know by heart all the division facts derived from the $\times 2, \times 3, \times 4, \times 5, \times 8$ and $\times 10$ tables
Divide whole numbers by 10 or 100 to give whole number answers
Recognise that division is not commutative
Use place value and number facts in mental division
e.g. $84 \div 4$ is half of 42

Divide larger numbers mentally by subtracting the 10th multiple as appropriate, including those with remainders
e.g. $57 \div 3$ is $10+9$ as $10 \times 3=30$ and $9 \times 3=27$

Halve even numbers to 100 , halve odd numbers to 20

Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction.

2 d divided by 1 d using base 10 or place value counters

2 digit $\div 1$ digit using lolly sticks or Cuisenaire rods above a ruler.

Use of lollipop sticks to form wholes- squares are made because we are dividing by 4 .
\longrightarrow
There are 3 whole squares, with 1 left ove:

Sharing using place value counters. Eg $42 \div 3=$

Children represent lolly sticks pictorially.
$13 \div 3=$

There are 3 whole squares with 1 left over.

Children encouraged to use times tables facts or show repeated addition on a number line.

'3 groups of 4 , with 1 left over'

Children use sort division scaffold.
15r1
$5 \longdiv { 7 6 }$

Add any two 2-digit numbers by partitioning or counting on Know by heart/quickly derive number bonds to 100 and to $£ 1$ Add to the next 100, $£ 1$ and whole number e.g. $234+66=300$ e.g. $3 \cdot 4+0 \cdot 6=4$ Perform place-value additions without a struggle $\text { e.g. } 300+8+50+4000=4358$ Add multiples and near multiples of 10 , 100 and 1000 Add $£ 1,10$ p, 1 p to amounts of money Use place value and number facts to add 1-, 2-, 3 - and 4-digit numbers where a mental calculation is appropriate e.g. $4004+156$ by knowing that $6+4=$ 10 and that $4004+150=4154$ so the total is 4160 Column method - regrouping. (up to 4 digits)

Use of dienes to add ThHTO + HTO and ThHTO + ThHTO.
(When there are 10 ones in the 1 s column, we exchange for 1 ten. When there are 10 tens in the 10 s column, we exchange for 1 hundred. When there are 10 hundreds in the 100s column, we exchange for 1 thousand).

Bar models including unknown numbers up to 4 digits and decimals up to 1 decimal place.

Column addition for 3-digit and 4digit numbers
e.g.

Compact written method:
3557
1457
5014
11
Pupils need to be secure in understanding of place value so once they are working with 3+ digits and with decimals they can begin to use this compact method.

Subtract any two 2-digit numbers Know by heart/quickly derive number bonds to 100
Perform place-value subtractions without a struggle
e.g. $4736-706=4030$

Subtract multiples and near multiples of $10,100,1000, £ 1$ and 10 p
Subtract multiples of $0 \cdot 1$
Subtract by counting up
e.g. $503-368$ is done by adding $368+2+30+100+3$ (so we added 135)

Subtract, when appropriate, by counting back or taking away, using place value and number facts Subtract $£ 1,10 p, 1 p$ from amounts of money
Find change from $£ 10, £ 20$ and $£ 50$

Column method with regrouping. (up to 4 digits) and ThHTO - ThHTO. Exchange 1000 for 10 hundreds and so on.

Use bar model to calculate subtraction with larger numbers.

Juan read 367 pages in his book. The book has a total of 862 pages. How many pages does Juan have left to read?		
?	367	-367
		495
862		

Use expanded column subtraction for 4-digit numbers
(decomposition)

Use standard column subtraction for 4-digit numbers
(decomposition)

1
$6 \nmid 4$ -27

Use a vertical written method to multiply a 1-digit number by a 3digit number (ladder method) expanded written method

136

X5
30
150
500
680

Use an efficient written method to multiply a 2-digit number by a number between 10 and 20 by partitioning (grid method)

x	30	5
10	300	50
4	120	20

$300+50+120+20+490$

Know by heart all the division facts up to
$144 \div 12$
Divide whole numbers by 10,100 , to give whole number answers or answers with 1 decimal place
Divide multiples of 100 by 1-digit numbers using division facts
e.g. $3200 \div 8=400$

Use place value and number facts in mental division
e.g. $245 \div 20$ is half of $245 \div 10$

Divide larger numbers mentally by subtracting the 10th or 20 th multiple as appropriate
e.g. $156 \div 6$ is $20+6$ as $20 \times 6=120$
and
$6 \times 6=36$
Find halves of even numbers to 200 and beyond using partitioning Begin to halve amounts of money e.g. half of $£ 52 \cdot 40$ is $£ 26 \cdot 20$

Division with a remainder

Short division (up to 3 digits by 1 digit concrete and pictorial)

Short division using place value counters to group
$615 \div 5=$

Use a written method to divide a 2-digit or a 3-digit number by a
1-digit number
Give remainders as whole numbers.
$477 \div 7$

477	
-420	
57	$(60$ lots of 7$)$
$-\quad 56$	
1	

Children are encouraged to write the times table for support.
$x 7$
$1 \times 7=7$
$2 \times 7=14$
$3 \times 7=21$
$4 \times 7=28$
$5 \times 7=35$
Children use short division scaffold.

123 $561^{\prime \prime} 5$

Know number bonds to 1 and to the next whole number
Add to the next 10 from a decimal number
e.g. $13 \cdot 6+6 \cdot 4=20$

Add numbers with 2 significant digits only, using mental strategies
e.g. $3 \cdot 4+4 \cdot 8$
e.g. $23000+47000$

Add 1- or 2-digit multiples of 10, 100, 1000,
10000 and 100000
e.g. $8000+7000$
e.g. $600000+700000$

Add near multiples of $10,100,1000$, 10000 and 100000 to other numbers e.g. $82472+30004$

Add decimal numbers which are near multiples of 1 or 10 , including money e.g. $6.34+1.99$
e.g. $£ 34.59+£ 19.95$

Use place value and number facts to add two or more 'friendly' numbers, including money and decimals
e.g. $3+8+6+4+7$
e.g. $0.6+0.7+0.4$
e.g. $2056+44$

Use negative numbers on a scale
Column method regrouping
Use of place value counters for adding decimals.

Children use arrow cards, dienes and place value counters for numbers up to 100,000 including 2 decimal places.

Children use place value charts to calculate numbers up to 2 decimal places.

Use column addition to add two or three whole numbers with up to 5 digits
Use column addition to add any pair of 2-place decimal numbers, including amounts of money

34.10

+2.65
+
36.75

Check answers using inverse calculation and bar model

Subtract numbers with 2 significant digits only, using mental strategies
e.g. 6.2-4.5
e.g. $72000-47000$

Subtract 1- or 2-digit multiples of 10 , $100,1000,10000$ and 100000
e.g. $8000-3000$
e.g. $60000-200000$

Subtract 1- or 2-digit near multiples of $10,100,1000,10000$ and 100000 from other numbers
e.g. $82472-30004$

Subtract decimal numbers which are near multiples of 1 or 10 , including money
e.g. 6.34-1.99
e.g. $£ 34.59-£ 19.95$

Use counting up subtraction, with knowledge of number bonds to 10,100 or $£ 1$, as a strategy to perform mental subtraction
e.g. $£ 10-£ 3.45$
e.g. 1000-782

Column method with regrouping.
Abstract for whole numbers.
Start with place value counters for
decimals-
with
the same amount of decimal places.

Children use arrow cards, dienes and place value counters for numbers up to 100,000 including 2 decimal places.

Children use place value charts to calculate numbers up to 2 decimal places.

Use compact or expanded column subtraction (decomposition) to subtract numbers with up to 7 digits
In Y 5 and 6, time will also be spent dealing with zeros when adjusting the columns as this can be confusing to many children.
e.g. $402-187$

Choose the most efficient method in any given situation

Know by heart all the multiplication
facts up to 12×12
Multiply whole numbers and 1- and 2place decimals by $10,100,1000,10000$ Use knowledge of factors and multiples in multiplication
e.g. 43×6 is double 43×3
e.g. 28×50 is $1 / 2$ of $28 \times 100=1400$

Use knowledge of place value and rounding in mental multiplication
e.g. 67×199 as $67 \times 200-67$

Use doubling and halving as a strategy in mental multiplication
e.g. 58×5 is half of 58×10 e.g. 34×4 is 34 doubled twice

Partition 2-digit numbers, including decimals, to multiply by a 1-digit number mentally
e.g. 6×27 as 6×20 (120) plus 6×7 (42)

Double amounts of money by partitioning
e.g. $£ 37.45$ doubled is $£ 37$ doubled ($£ 74$) plus 45 p doubled (90p) giving a total of $£ 74.90$
Column multiplication
Abstract only but might need a repeat of year 4 first
(up to 4 digit numbers multiplied by 1 or 2 digits)

Children use dienes and place value counters for numbers up to 100,000 including 2 decimal places.

Children use place value charts to calculate numbers up to 2 decimal places.

Use short multiplication to multiply a 1-digit number by a number with up to 4 digits

Use long multiplication to multiply 2-digit and 4-digit numbers by a number between 11 and 20.
Choose the most efficient method in any given situation.

Most children in Y 5 should be able to work with the grid method and the expanded written
(ladder) method.
More able children may begin to use the standard written method.

142	142
$\times \quad 9$	
1278	
	1278
	1420

Find simple percentages of amounts.
e.g. $10 \%, 5 \%, 20 \%, 15 \%$ and 50%
Know by heart all the division facts up to
$144 \div 12$
Divide whole numbers by 10,100 ,
1000, 10000 to give whole number
answers or answers with
1,2 or 3 decimal places
Use doubling and halving as menta division strategies
e.g. $34 \div 5$ is $(34 \div 10) \times 2$
Use knowledge of multiples and
factors, as well as tests for divisibility, in mental division
e.g. $246 \div 6$ is $123 \div 3$
e.g. We know that 525 divides by 25
and
by 3
Halve amounts of money by partitioning
e.g. ${ }^{1} / 2$ of $£ 75 \cdot 40=1 / 2$ of $£ 75(£ 37 \cdot 50)$ plus half of 40 (20 p) which is $£ 37.70$
Divide larger numbers mentally by subtracting the 10th or 100th multiple as appropriate
e.g. $96 \div 6$ is $10+6$, as $10 \times 6=60$ and $6 \times 6=36$
e.g. $312 \div 3$ is $100+4$ as $100 \times 3=300$
and
$4 \times 3=12$
Know tests for divisibility by $2,3,4,5$, 6, 9 and 25
Know square numbers and cube numbers
Reduce fractions to their simplest form

```

\section*{Short division}
```

(up to 4 digits by a 1 digit number including remainders)

```

Use short division to divide a number with up to 4 digits by a number \(\leq 12\) Give remainders as whole numbers or as fractions.
Find non-unit fractions of large amounts.
Turn improper fractions into mixed numbers and vice versa. Choose the most efficient method in any given situation.
Explain the bus stop method through chunking.
\begin{tabular}{ll}
\(\frac{106 r 2}{}\) \\
\hline \(6 / 638\) \\
\(\frac{600}{38}\) & \(100 x\) \\
\(\frac{36}{2}\) & \(6 x\)
\end{tabular}

Then
106r2
\(6 \longdiv { 6 3 8 }\) and use these to derive related facts e.g. \(3.46+0.54\)

Derive, quickly and without difficulty, number bonds to 1000
Add small and large whole numbers where the use of place value or number facts makes the calculation do-able mentally
e.g. \(34000+8000\)

Add multiples of powers of 10 and near multiples of the same
e.g. \(6345+199\)

Add negative numbers in a context such as temperature where the numbers make sense
Add two 1-place decimal numbers or two
2-place decimal numbers less than 1 e.g. \(4 \cdot 5+6 \cdot 3\)
e.g. \(0.74+0.33\)

Add positive numbers to negative numbers
e.g. Calculate a rise in temperature or continue a sequence beginning with a negative number

Column method regrouping.
Abstract methods.
Place value counters to be used for adding decimal numbers.

Children use arrow cards or place value counters up to \(10,000,000\) including 3 decimal places.


Children use bar models using knowledge of number bonds.


B


Children use place value charts to calculate numbers up to 3 decimal places.


\section*{Use column addition to add numbers with up to 8 digits.}

Use column addition to add decimal numbers with up to 3 decimal places.

Add mixed numbers and fractions with different denominators.
\begin{tabular}{|l|l|}
\hline Y6- & \begin{tabular}{l} 
Use number bonds to 100 to perform \\
mental subtraction of any pair of \\
integers by complementary addition \\
e.g. \(1000-654\) as \(46+300\) in our \\
heads \\
\\
\\
Use number bonds to 1 and 10 to \\
perform mental subtraction of any pair \\
of 1-place or \\
2-place decimal numbers using \\
complementary addition and including \\
money \\
e.g. \(10-3 \cdot 65\) as \(0 \cdot 35+6\) \\
e.g. \(£ 50-£ 34 \cdot 29\) as \(71 p+£ 15\) \\
Use number facts and place value to \\
perform mental subtraction of large \\
numbers or decimal numbers with up \\
to 2 places \\
e.g. \(467900-3005\) \\
e.g. \(4.63-1.02\) \\
Subtract multiples of powers of 10 and \\
near multiples of the same \\
Subtract negative numbers in a context \\
such as temperature where the \\
numbers make sense
\end{tabular} \\
Column method with regrouping. \\
Abstract methods. \\
Place value counters for decimals \\
with different amounts of decimal \\
places.
\end{tabular}

Children use arrow cards or place value counters up to \(10,000,000\) including 3 decimal places.


Bar model for addition and subtraction.
\begin{tabular}{|c|c|}
\hline\(A\) & \(B\) \\
\hline 631,255 \\
\hline
\end{tabular}

Use column subtraction (decomposition) to subtract numbers with up to 8 digits.

Subtract mixed numbers and fractions with different denominators.

Know by heart all the multiplication facts up to
\(12 \times 12\)
Multiply whole numbers and decimals with up to
3 places by 10, 100 or 1000
e.g. \(234 \times 1000=234000\)
e.g. \(0.23 \times 1000=230\)

Identify common factors, common multiples and prime numbers and use factors in mental multiplication
e.g. \(326 \times 6\) is \(652 \times 3\) which is 1956

Use place value and number facts in mental multiplication
e.g. \(4000 \times 6=24000\)
e.g. \(0.03 \times 6=0.18\)

Use doubling and halving as mental multiplication strategies, including to multiply by \(2,4,8,5,20,50\) and 25
e.g. \(28 \times 25\) is a quarter of \(28 \times 100=\) 700

Use rounding in mental multiplication e.g. \(34 \times 19\) as \((34 \times 20)-34\)

Multiply 1-and 2-place decimals by numbers up to and including 10 using place value and partitioning
e.g. \(3.6 \times 4\) is \(12+2 \cdot 4\)
e.g. \(2.53 \times 3\) is \(6+1.5+0.09\)

Double decimal numbers with up to 2 places using partitioning e.g. \(36 \cdot 73\) doubled is double 36 (72) plus double 0.73 (1.46)

Column multiplication
Abstract methods (multi-digit up to 4 digits by a 2 digit number)

Long multiplication up to 8 digits using place value counters.


Use standard long multiplication to multiply a 2-digit number by a number with up to 4 digits

Use standard long multiplication to multiply a 3-digit number by a number with up to 4 digits

Multiply fractions and mixed numbers by whole numbers

Multiply fractions by proper fractions

Use percentages for comparison and calculate simple percentages

Know by heart all the division facts up
\(144 \div 12\)
Divide whole numbers by powers of 10 to give whole number answers or answers with up to
3 decimal places
Identify common factors, common multiples and primes numbers and use factors in mental division
e.g. \(438 \div 6\) is \(219 \div 3\) which is 73

Use tests for divisibility to aid mental calculation
Use doubling and halving as mental division strategies, for example to divide by \(2,4,8,5,20\) and 25
e.g. \(628 \div 8\) is halved three times: 314, 157, 78.5

Divide 1- and 2-place decimals by numbers up to and including 10 using place value
e.g. \(2.4 \div 6=0.4\)
e.g. \(0 \cdot 65 \div 5=0.13\)
e.g. \(£ 6 \cdot 33 \div 3=£ 2 \cdot 11\)

Halve decimal numbers with up to 2 places using partitioning
e.g. Half of 36.86 is half of 36 (18) plus half of 0.86 ( 0.43 )
Know and use equivalence between simple fractions, decimals and percentages, including in different contexts
Recognise a given ratio and reduce a given ratio to its lowest terms

Short division
Long division with place value counters
(up to 4 digits by a 2 digit number)
Children should exchange into the tenths and hundredths column too

Long division using place value counters.


Bar models to solve multiplication and division problems.


Use short division to divide a number with up to 4 digits by a 2digit number

Use long division (standard long division method aka "bus stop") to divide 3-digit and 4-digit numbers by 'friendly' 2-digit numbers.

> After exchanging the hundred, we
> have 14 tens. We can group 12 tens
> into a group of 12 , which leaves 2 tens.


After exchanging the 2 tens, we have 24 ones. We can group 24 ones
into 2 group of 12 , which leaves no remainder


Give remainders as whole numbers or as fractions or as decimals
Divide a 1-place or a 2-place decimal number by a number \(\leq\) 12 using multiples of the divisors. Divide proper fractions by whole numbers
Chunking to include decimals:
e.g. \(476 \div 5\)

\section*{476}
\(-450\)
(90 lots of 5)
\(\square\)
\(-25\)
(5 lots of 5)

\(-1\)
(0.2 lots of 5)

0
\begin{tabular}{|c|c|c|c|c|}
\hline & & &  & Extending to 3 or 4 digit by 2 digit division using chunking
\[
\begin{aligned}
\frac{.216 / 23}{23 \lcm{489}} & \\
\frac{460}{29} & 20 x \\
\frac{23}{6} & 1 x
\end{aligned}
\] \\
\hline
\end{tabular}```

