Year 6 Maths Mastery Add and Subtract Fractions

Challenge Cards

1. A teacher wants to share some pencils between 2 groups of children, offering one group $\frac{3}{4}$ and the other $\frac{2}{5}$ of the pencils.

Explain how you could add the fractions to show this is not possible.

Year 6 Maths Mastery Challenge Cards

2. Spot the errors and correctly calculate.

$$\frac{5}{6} + \frac{7}{8} = \frac{30}{36} + \frac{28}{36} = \frac{58}{36} = 1\frac{22}{36} = 1\frac{11}{18}$$

$$\frac{7}{10} + \frac{5}{12} = \frac{45}{60} + \frac{24}{60} = \frac{69}{60} = \frac{1}{60} = \frac{1}{10}$$

$$1\frac{3}{8} + 2\frac{2}{3} = 1\frac{9}{24} + 2\frac{16}{24} = \frac{25}{24}$$

Year 6 Maths Mastery Challenge Cards

3. 3 friends order some pizzas. One eats $\frac{7}{8}$ of a pizza, another $\frac{5}{6}$ and the last $\frac{1}{3}$ of a pizza. They have less than a whole pizza left. How many pizzas did they order, and what fraction is left?

Year 6 Maths Mastery Challenge Cards

4. Sami adds two fractions together and got $\frac{3}{4}$ as the answer.

Write down what the fractions could be. How many pairs of fractions can you come up with?

Year 6 Maths Mastery Challenge Cards

5. Give as many reasons as you can to explain why $\frac{9}{10} - \frac{1}{4} \neq \frac{8}{6}$.

Share your ideas in a group. How many different reasons can you come up with?

Year 6 Maths Mastery Challenge Cards

6. Shelley writes down 2 fractions with a difference of $\frac{1}{6}$. Write down some pairs of fractions that Shelley could have written down, expressing all fractions in their simplest form.

Draw a visual representation of one pair of fractions to show the difference is $\frac{1}{6}$. Share this with a partner.

Year 6 Maths Mastery Challenge Cards

7. Alice's mother bakes some cupcakes for a party. She puts $\frac{3}{4}$ of the cakes out at the party, and $\frac{3}{5}$ of all the cakes are eaten.

What fraction of all the cakes are put out at the party but not eaten?

and a laboratoria

Year 6 Maths Mastery Challenge Cards **Answers**

1. The fractions need to be expressed with the same denominator.

The lowest common multiple of 4 and 5 is 20, so express the

$$\frac{3}{4} + \frac{2}{5} = \frac{15}{20} + \frac{8}{20} = \frac{23}{20} = 1\frac{3}{20}$$

fractions as 20^{th} . $\frac{3}{4} + \frac{2}{5} = \frac{15}{20} + \frac{8}{20} = \frac{23}{20} = 1\frac{3}{20}$ This is more than 1 whole, so the pencils cannot be shared with these fractions.

2.
$$\frac{5}{6} + \frac{7}{8} = \frac{20}{24} + \frac{21}{24} = \frac{41}{24} = 1 \cdot \frac{17}{24}$$

 $\frac{7}{10} + \frac{5}{12} = \frac{42}{60} + \frac{25}{60} = \frac{67}{60} = 1 \cdot \frac{7}{60}$ (also $1\frac{9}{60} = 1\frac{3}{20}$)
 $3\frac{25}{24} = 4\frac{1}{24}$

3.
$$\frac{7}{8} + \frac{5}{6} + \frac{1}{3} = \frac{21}{24} + \frac{20}{24} + \frac{8}{24} = \frac{49}{24} = 2\frac{1}{24}$$
. They ordered 3 pizzas and $\frac{23}{24}$ was left.

$$4.\frac{1}{2} + \frac{1}{4}, \frac{3}{8} + \frac{3}{8}, \frac{5}{8} + \frac{1}{8}, \frac{1}{8} + \frac{1}{12} \dots$$

5.
$$\frac{9}{10} < 1$$
, so $\frac{9}{10} - \frac{1}{4} < 1$ but $\frac{8}{6} > 1$
 $\frac{9}{10} - \frac{1}{4} = 0.9 - 0.25 = 0.65$ but $\frac{8}{6} = 1.33$
 $\frac{9}{10} - \frac{1}{4} = \frac{18}{20} - \frac{5}{20} = \frac{13}{20}$

6.
$$\frac{5}{6} - \frac{2}{3}$$
, $\frac{2}{3} - \frac{1}{2}$, $\frac{1}{3} - \frac{1}{6}$, $\frac{1}{2} - \frac{1}{3}$, ...

7.
$$\frac{3}{4} - \frac{3}{5} = \frac{15}{20} - \frac{12}{20} = \frac{3}{20}$$